Spark plug wire used to be nothing more than a solid core length of wire with some type of insulation. Suppression wire was later developed to combat radio interference, otherwise known as RFI (radio frequency interference) or EMi (electro-magnetic interference). For suppression wire to work, it must contain a certain amount of electrical resistance. Because of this resistance, it was never useful in race applications, where every bit of spark energy is beneficial to lighting an adequate fire within the engine’s cylinders. For that reason, racers always choose a solid core plug wire, which had no suppression capabilities, but offered very little resistance to the spark generated by modern era ignition boxes.

That changed in the mid-’80’s when data loggers became standard issue on race cars. The capabilities of those early loggers were very susceptible to RFI noise, which could disrupt the timing functions of the delay/ throttle stop boxes, as well as the recording ability of data loggers. Though most manufacturers installed some filtering, RFI became a big issue in the racing industry.

The engineers at Moroso realized the need for enhanced suppression plug wire that would alleviate or reduce the amount of RFI. A spark voltage that exceeds 50,000-volts through a plug wire would inevitably find its way through the outer core wires and into the airwaves. So, it became optimal for racers to install suppression plug wire, but the requirement to have a very low resistance wire was a necessity.

Moroso Wire Technology led the development of modern ignition wire, designed with a Kevlar core, nickel-copper alloy wire wrapped around the Kevlar and ferrite-impregnated outer sleeve. Moroso high performance Ignition Wire, manufactured at our facility in Philadelphia, protects against heat, chaffing, contaminants and results in a resistance of only 40-ohms per foot.

Spark plug wire used to be nothing more than a solid core length of wire with some type of insulation. Suppression wire was later developed to combat radio interference, otherwise known as RFI (radio frequency interference) or EMi (electro-magnetic interference). For suppression wire to work, it must contain a certain amount of electrical resistance. Because of this resistance, it was never useful in race applications, where every bit of spark energy is beneficial to lighting an adequate fire within the engine’s cylinders. For that reason, racers always choose a solid core plug wire, which had no suppression capabilities, but offered very little resistance to the spark generated by modern era ignition boxes.

That changed in the mid-’80’s when data loggers became standard issue on race cars. The capabilities of those early loggers were very susceptible to RFI noise, which could disrupt the timing functions of the delay/ throttle stop boxes, as well as the recording ability of data loggers. Though most manufacturers installed some filtering, RFI became a big issue in the racing industry.

The engineers at Moroso realized the need for enhanced suppression plug wire that would alleviate or reduce the amount of RFI. A spark voltage that exceeds 50,000-volts through a plug wire would inevitably find its way through the outer core wires and into the airwaves. So, it became optimal for racers to install suppression plug wire, but the requirement to have a very low resistance wire was a necessity.

Moroso Wire Technology led the development of modern ignition wire, designed with a Kevlar core, nickel-copper alloy wire wrapped around the Kevlar and ferrite-impregnated outer sleeve. Moroso high performance Ignition Wire, manufactured at our facility in Philadelphia, protects against heat, chaffing, contaminants and results in a resistance of only 40-ohms per foot.

HOW MOROSO IGNITION WIRE IS MANUFACTURED
ADAPTED FROM DRAG RACING ACTION MAGAZINE
BY JOHN DIBARTOLOMEO

Spark plug wire used to be nothing more than a solid core length of wire with some type of insulation. Suppression wire was later developed to combat radio interference, otherwise known as RFI (radio frequency interference) or EMi (electro-magnetic interference). For suppression wire to work, it must contain a certain amount of electrical resistance. Because of this resistance, it was never useful in race applications, where every bit of spark energy is beneficial to lighting an adequate fire within the engine’s cylinders. For that reason, racers always choose a solid core plug wire, which had no suppression capabilities, but offered very little resistance to the spark generated by modern era ignition boxes.

That changed in the mid-’80’s when data loggers became standard issue on race cars. The capabilities of those early loggers were very susceptible to RFI noise, which could disrupt the timing functions of the delay/ throttle stop boxes, as well as the recording ability of data loggers. Though most manufacturers installed some filtering, RFI became a big issue in the racing industry.

The engineers at Moroso realized the need for enhanced suppression plug wire that would alleviate or reduce the amount of RFI. A spark voltage that exceeds 50,000-volts through a plug wire would inevitably find its way through the outer core wires and into the airwaves. So, it became optimal for racers to install suppression plug wire, but the requirement to have a very low resistance wire was a necessity.

Moroso Wire Technology led the development of modern ignition wire, designed with a Kevlar core, nickel-copper alloy wire wrapped around the Kevlar and ferrite-impregnated outer sleeve. Moroso high performance Ignition Wire, manufactured at our facility in Philadelphia, protects against heat, chaffing, contaminants and results in a resistance of only 40-ohms per foot.

HOW MOROSO IGNITION WIRE IS MANUFACTURED
ADAPTED FROM DRAG RACING ACTION MAGAZINE
BY JOHN DIBARTOLOMEO

Spark plug wire used to be nothing more than a solid core length of wire with some type of insulation. Suppression wire was later developed to combat radio interference, otherwise known as RFI (radio frequency interference) or EMi (electro-magnetic interference). For suppression wire to work, it must contain a certain amount of electrical resistance. Because of this resistance, it was never useful in race applications, where every bit of spark energy is beneficial to lighting an adequate fire within the engine’s cylinders. For that reason, racers always choose a solid core plug wire, which had no suppression capabilities, but offered very little resistance to the spark generated by modern era ignition boxes.

That changed in the mid-’80’s when data loggers became standard issue on race cars. The capabilities of those early loggers were very susceptible to RFI noise, which could disrupt the timing functions of the delay/ throttle stop boxes, as well as the recording ability of data loggers. Though most manufacturers installed some filtering, RFI became a big issue in the racing industry.

The engineers at Moroso realized the need for enhanced suppression plug wire that would alleviate or reduce the amount of RFI. A spark voltage that exceeds 50,000-volts through a plug wire would inevitably find its way through the outer core wires and into the airwaves. So, it became optimal for racers to install suppression plug wire, but the requirement to have a very low resistance wire was a necessity.

Moroso Wire Technology led the development of modern ignition wire, designed with a Kevlar core, nickel-copper alloy wire wrapped around the Kevlar and ferrite-impregnated outer sleeve. Moroso high performance Ignition Wire, manufactured at our facility in Philadelphia, protects against heat, chaffing, contaminants and results in a resistance of only 40-ohms per foot.

HOW MOROSO IGNITION WIRE IS MANUFACTURED
ADAPTED FROM DRAG RACING ACTION MAGAZINE
BY JOHN DIBARTOLOMEO

Spark plug wire used to be nothing more than a solid core length of wire with some type of insulation. Suppression wire was later developed to combat radio interference, otherwise known as RFI (radio frequency interference) or EMi (electro-magnetic interference). For suppression wire to work, it must contain a certain amount of electrical resistance. Because of this resistance, it was never useful in race applications, where every bit of spark energy is beneficial to lighting an adequate fire within the engine’s cylinders. For that reason, racers always choose a solid core plug wire, which had no suppression capabilities, but offered very little resistance to the spark generated by modern era ignition boxes.

That changed in the mid-’80’s when data loggers became standard issue on race cars. The capabilities of those early loggers were very susceptible to RFI noise, which could disrupt the timing functions of the delay/ throttle stop boxes, as well as the recording ability of data loggers. Though most manufacturers installed some filtering, RFI became a big issue in the racing industry.

The engineers at Moroso realized the need for enhanced suppression plug wire that would alleviate or reduce the amount of RFI. A spark voltage that exceeds 50,000-volts through a plug wire would inevitably find its way through the outer core wires and into the airwaves. So, it became optimal for racers to install suppression plug wire, but the requirement to have a very low resistance wire was a necessity.

Moroso Wire Technology led the development of modern ignition wire, designed with a Kevlar core, nickel-copper alloy wire wrapped around the Kevlar and ferrite-impregnated outer sleeve. Moroso high performance Ignition Wire, manufactured at our facility in Philadelphia, protects against heat, chaffing, contaminants and results in a resistance of only 40-ohms per foot.

HOW MOROSO IGNITION WIRE IS MANUFACTURED
ADAPTED FROM DRAG RACING ACTION MAGAZINE
BY JOHN DIBARTOLOMEO

Spark plug wire used to be nothing more than a solid core length of wire with some type of insulation. Suppression wire was later developed to combat radio interference, otherwise known as RFI (radio frequency interference) or EMi (electro-magnetic interference). For suppression wire to work, it must contain a certain amount of electrical resistance. Because of this resistance, it was never useful in race applications, where every bit of spark energy is beneficial to lighting an adequate fire within the engine’s cylinders. For that reason, racers always choose a solid core plug wire, which had no suppression capabilities, but offered very little resistance to the spark generated by modern era ignition boxes.

That changed in the mid-’80’s when data loggers became standard issue on race cars. The capabilities of those early loggers were very susceptible to RFI noise, which could disrupt the timing functions of the delay/ throttle stop boxes, as well as the recording ability of data loggers. Though most manufacturers installed some filtering, RFI became a big issue in the racing industry.

The engineers at Moroso realized the need for enhanced suppression plug wire that would alleviate or reduce the amount of RFI. A spark voltage that exceeds 50,000-volts through a plug wire would inevitably find its way through the outer core wires and into the airwaves. So, it became optimal for racers to install suppression plug wire, but the requirement to have a very low resistance wire was a necessity.

Moroso Wire Technology led the development of modern ignition wire, designed with a Kevlar core, nickel-copper alloy wire wrapped around the Kevlar and ferrite-impregnated outer sleeve. Moroso high performance Ignition Wire, manufactured at our facility in Philadelphia, protects against heat, chaffing, contaminants and results in a resistance of only 40-ohms per foot.

HOW MOROSO IGNITION WIRE IS MANUFACTURED
ADAPTED FROM DRAG RACING ACTION MAGAZINE
BY JOHN DIBARTOLOMEO

Spark plug wire used to be nothing more than a solid core length of wire with some type of insulation. Suppression wire was later developed to combat radio interference, otherwise known as RFI (radio frequency interference) or EMi (electro-magnetic interference). For suppression wire to work, it must contain a certain amount of electrical resistance. Because of this resistance, it was never useful in race applications, where every bit of spark energy is beneficial to lighting an adequate fire within the engine’s cylinders. For that reason, racers always choose a solid core plug wire, which had no suppression capabilities, but offered very little resistance to the spark generated by modern era ignition boxes.

That changed in the mid-’80’s when data loggers became standard issue on race cars. The capabilities of those early loggers were very susceptible to RFI noise, which could disrupt the timing functions of the delay/ throttle stop boxes, as well as the recording ability of data loggers. Though most manufacturers installed some filtering, RFI became a big issue in the racing industry.

The engineers at Moroso realized the need for enhanced suppression plug wire that would alleviate or reduce the amount of RFI. A spark voltage that exceeds 50,000-volts through a plug wire would inevitably find its way through the outer core wires and into the airwaves. So, it became optimal for racers to install suppression plug wire, but the requirement to have a very low resistance wire was a necessity.

Moroso Wire Technology led the development of modern ignition wire, designed with a Kevlar core, nickel-copper alloy wire wrapped around the Kevlar and ferrite-impregnated outer sleeve. Moroso high performance Ignition Wire, manufactured at our facility in Philadelphia, protects against heat, chaffing, contaminants and results in a resistance of only 40-ohms per foot.